Free Algebra
Miscellaneous Equations
Operations with Fractions
Undefined Rational Expressions
Writing Equations for Lines Using Sequences
Intersections of Lines and Conics
Graphing Linear Equations
Solving Equations with Log Terms and Other Terms
Quadratic Expresions - Complete Squares
Adding and Subtracting Fractions with Like Denominators
Multiplying a Fraction by a Whole Number
Solving Equations with Log Terms and Other Terms
Solving Quadratic Equations by Factoring
Locating the Solutions of the Quadratic Equation
Properties of Exponents
Solving Equations with Log Terms on Each Side
Graphs of Trigonometric Functions
Estimating Products and Quotients of Mixed Numbers
The circle
Adding Polynomials
Adding Fractions with Unlike Denominators
Factoring Polynomials
Linear Equations
Powers of Ten
Straight Lines
Dividing With Fractions
Multiplication Property of Equality
Rationalizing Denominators
Multiplying And Dividing Fractions
Distance Between Points on a Number Line
Solving Proportions Using Cross Multiplication
Using the Quadratic Formula
Scientific Notation
Imaginary Numbers
Values of Symbols for Which Fractions are Undefined
Graphing Equations in Three Variables
Writing Fractions as Decimals
Solving an Equation with Two Radical Terms
Solving Linear Systems of Equations by Elimination
Factoring Trinomials
Positive Rational Exponents
Adding and Subtracting Fractions
Negative Integer Exponents
Rise and Run
Multiplying Square Roots
Multiplying Polynomials
Solving Systems of Linear Inequalities
Multiplication Property of Radicals
A Quadratic within a Quadratic
Graphing a Linear Equation
Calculations with Hundreds and Thousands
Multiplication Property of Square and Cube  Roots
Solving Equations with One Log Term
The Cartesian Coordinate Plane
Equivalent Fractions
Adding and Subtracting Square Roots
Solving Systems of Equations
Exponent Laws
Solving Quadratic Equations
Factoring Trinomials
Solving a System of Three Linear Equations by Elimination
Factoring Expressions
Adding and Subtracting Fractions
The parabola
Computations with Scientific Notation
Quadratic Equations
Finding the Greatest Common Factor
Introduction to Fractions
Simplifying Radical Expressions Containing One Term
Polynomial Equations
Graphing and Intercepts
The Number Line
Adding and Subtracting Rational Expressions with Different Denominators
Scientific Notation vs Standard Notation
Factoring by Grouping
Extraneous Roots
Variables and Expressions
Linera Equations
Integers and Substitutions
Squares and Square Roots
Adding and Subtracting Rational Expressions with Different Denominators
Solving Linear Inequalities
Expansion of a Product of Binomials
Powers and Exponents
Finding The Greatest Common Factor
Quadratic Functions
The Intercepts of a Parabola
Solving Equations Containing Rational Expressions
Subtracting Polynomials
Solving Equations
Adding Fractions with Unlike Denominators
Solving Systems of Equations by Substitution
Solving Equations
Product and Quotient of Functions
Try the Free Math Solver or Scroll down to Tutorials!












Please use this form if you would like
to have this math solver on your website,
free of charge.

Factoring Polynomials

Multiplication of polynomials relies on the distributive property. The reverse process, where a polynomial is written as a product of other polynomials, is called factoring. For example, one way to factor the number 18 is to write it as the product both 9 and 2 are factors of 18. Usually, only integers are used as factors of integers. The number 18 can also be written with three integer factors as

The Greatest Common Factor

To factor the algebraic expression 15m + 45, first note that both 15 m and 45 are divisible by 15; and By the distributive property,

Both 15 and m+3 are factors of 15m + 45. Since 15 divides into both terms of 15m + 45 (and is the largest number that will do so), 15 is the greatest common factor for the polynomial 15m + 45. The process of writing 15m + 45 as15(m+3) is often called factoring out the greatest common factor.



Factor out the greatest common factor.

(a) 12p - 18q


Both 12 p and 18 q are divisible by 6. Therefore,

12p - 18q = 6·2p - 6·3q = 6 (2p -3q)

(b) 8x- 9x + 15x


Each of these terms is divisible by x .

8x- 9x + 15x = (8x)x- (9x)x + (15)x

= x(8x- 9x + 15) or (8x- 9x + 15)x

One can always check factorization by finding the product of the factors and comparing it to the original expression.


When factoring out the greatest common factor in an expression like 2x + x be careful to remember the 1 in the second term.

2x + x = 2x + 1x = x(2x + 1) not x(2x)

All Right Reserved. Copyright 2005-2023